What regulates the alternative splicing of the TP53 gene and how can we take control of it to change cell fate outcome in response to cellular stress?

We demonstrated that the p53 tumour suppressor gene expresses at least twelve different p53 proteins due to alternative splicing, alternative initiation of translation and alternative promoter usage. We determined that p53 isoform proteins are expressed in normal human tissue in a tissue dependent manner. P53 isoforms are abnormally expressed in a wide range of cancer and are associated with breast cancer prognosis.

The spatio-temporal dynamics of induction of the Keap1/Nrf2 pathway

Multicellular organisms are equipped with elaborate networks of cytoprotective proteins (e.g., glutathione transferases, NAD(P)H: quinone oxidoreductase 1, heme oxygenase 1) that defend against the damaging effects of oxidants and electrophiles, the principal contributors to the pathogenesis of chronic diseases. Under basal conditions, these genes whose transcription is dependent on transcription factor Nrf2, are not expressed at their maximum capacity, but can be upregulated (induced) by a variety of synthetic and natural agents (inducers).


Subscribe to RSS - Cancer